
PGConf.EU 2024 | Athens
Thomas Munro & Nazir Bilal Yavuz
Open source database hackers working at Microsoft

Streaming I/O
New abstractions for efficient file I/O

Part I: Review of OS facilities

• direct I/O vs
buffered I/O

• vectored I/O (also
called scatter/gather)

• asynchronous I/O vs
synchronous I/O

Database
I/O Programming

1

2

3

read, write, worksync, iowaitMULTICS (’65)

UNIX (’69) read, write

POSIX (’93) aio_read, aio_write, …

BSD, IRIX, …
(’80s-’90s)

p… = with position
…v = vectored
p…v = both

Linux (’19) io_uring

O_DIRECT

Linux (’03?) libaio + kernel support

IBM S/360 (’65)

DEC RX11 (’71)

VMS (’77)

NT (’93)

C
on

te
m

po
ra

ry
 s

ys
te

m
s

U
ni

x
lin

e
of

 s
ys

te
m

s

UNIX deliberately
simplified: only
synchronous
buffered I/O

All had/have
various forms of

asynchronous I/O
interface

fd = open("path", O_RDWR);
read(fd, …) write(fd, …)

1

fd = open("path", O_RDWR | O_DIRECT);
read(fd, …) write(fd, …)

Kernel page cache

User space buffer

Disk

User space buffer

Disk

Direct I/O

DMA
transfer

DMA
transfer

CPU
copies

RAM

Direct I/O is an optimisation (CPU, RAM) and a pessimisation (when synchronous)!

Who wants direct I/O?
Systems that manage their own buffer pool (basically, databases*)

• Our user space buffer *is* a cache
already, similar to kernel page cache!

• I/O buffering wastes your RAM and
your CPU, throughput is reduced

• But… to skip the page cache
effectively, we also need our own I/O
combining, concurrency, read-ahead,
write-behind, and to tune the buffer
pool size more carefully

4k

3k

2k
1G 2G0G

TPS

PostgreSQL 16

Vectored I/O… who needs it?
Systems that manage their own buffer
pool (basically, databases)

• We want to read large contiguous
chunks of a file into memory in one
operation

• The buffer replacement algorithm
doesn’t try to find contiguous
memory blocks (and shouldn’t!)

• Kernel helps only with buffered I/O

ssize_t pread (int filedes, void *buf, size_t nbytes, off_t offset)
ssize_t preadv(int filedes, struct iovec *iov, int iovcnt, off_t offset)

struct iovec
{
 void *iov_base;
 size_t iov_len;
};

2

PostgreSQL 17

But how?

Asynchronous I/O: who needs it?
People using direct I/O! (and others…)

• While executing a query, we don’t want our thread to “go to
sleep” waiting for an I/O operation

• Simple portable implementation is to have I/O worker
threads/processes running preadv/pwritev system call

• Modern (and ancient) OSes offer ways to skip the scheduling
and IPC overheads of using a extra threads/processes

• Infrastructure not present in PostgreSQL yet as of v17; patches
exist, testing and review welcome

3

What architectural changes do we need to
use all of these features effectively?

Part II: Read Streams

“Reading” blocks of relation data
A very common operation

● PostgreSQL works in terms of 8KB blocks, traditionally calling
ReadBuffer(relation identifier, block_number)
to access each one

● If the buffer is already in the buffer pool, it is pinned
● If the buffer is not already in the buffer pool, it must be loaded from disk,

possibly after evicting something else to make space
● In order to build larger I/Os and start the physical I/O asynchronously, we

need to find all the places that do that, and somehow convince them to
participate in a new prediction and grouping system

Ad hoc grouping and read-ahead at every call site

Re-usable stream mechanism

for (i = 0; i < nblocks; ++i)
{
 buf = ReadBuffer(…, i);
 ReleaseBuffer(buf);
}

static BlockNumber my_blocknum_callback(void *private_data);

stream = read_stream_begin_relation(…,
 my_blocknum_callback,
 &my_callback_state, …);
for (i = 0; i < nblocks; ++i)
{
 buf = read_stream_next(stream);
 ReleaseBuffer(buf);
}
read_stream_end(stream);

}io_combine_limit
pinned buffers
are pulled out

here

combined blocks
read in with

preadv()

block numbers
are pulled in here

static BlockNumber my_blocknum_callback(void *private_data);

stream = read_stream_begin_relation(…,

my_blocknum_callback,

&my_callback_state, …);
for (i = 0; i < nblocks; ++i)
{
 buf = read_stream_next(stream);
 ReleaseBuffer(buf);
}
read_stream_end(stream);
}effective_io_concurrency

By issuing POSIX_FADV_WILLNEED as soon as possible and preadv() as late as
possible, we get a sort of poor man’s asynchronous I/O.

non-sequential block
numbers hinted to

kernel with
posix_fadvise()

preadv() deferred until
absolutely necessary,
so the hint as a good
chance of working!

- Danish proverb about look-ahead callback functions

Prediction is difficult, especially

about the future

0

1

2

3

4

5

Arithmetic-driven:
seq scan (v17)
ANALYZE sampling (v17)

Data-driven:
bitmap heapscan (WIP)
recovery (WIP)

0

1

2

3

4

5

Callback of ANALYZE

static BlockNumber

block_sampling_read_stream_next(ReadStream *stream,

 void *callback_private_data ,

 void *per_buffer_data)

{

 BlockSamplerData *bs = callback_private_data ;

 return BlockSampler_HasMore(bs) ? BlockSampler_Next(bs) : InvalidBlockNumber ;

}

Knuth’s sampling
algorithm is used to

select block numbers
to analyze. Block

numbers are
increasing not always

consecutive.

Callback of bitmap heap scan

static BlockNumber
heap_bitmap_scan_stream_read_next(ReadStream *stream ,
 void *callback_private_data,
 void *per_buffer_data)
{
 TBMIterateResult *tbmres = per_buffer_data;
 BitmapHeapScanDesc *bscan = callback_private_data;
 HeapScanDesc *hscan = &bscan->rs_heap_base;

 for (;;)
 {
 CHECK_FOR_INTERRUPTS ();

 tbm_iterate(&hscan->rs_base.tbmiterator, tbmres);

 /* no more entries in the bitmap */
 if (!BlockNumberIsValid(tbmres->blockno))
 return InvalidBlockNumber ;

 if (!IsolationIsSerializable () && tbmres->blockno >= hscan->rs_nblocks)
 continue ;

 if (!(hscan->rs_base.rs_flags & SO_NEED_TUPLES) &&
 !tbmres->recheck &&
 VM_ALL_VISIBLE (hscan->rs_base.rs_rd, tbmres->blockno, &bscan->rs_vmbuffer))
 {
 Assert (tbmres->ntuples >= 0);
 Assert (bscan->rs_empty_tuples_pending >= 0);

 bscan->rs_empty_tuples_pending += tbmres->ntuples;
 continue ;
 }

 return tbmres->blockno;
 }

 /* not reachable */
 Assert (false);
}

Iterating through bitmap

* https://www.postgresql.org/message-id/CAAKRu_ZwCwWFeL_H3ia26bP2e7HiKLWt0ZmGXPVwPO6uXq0vaA%40mail.gmail.com

https://www.postgresql.org/message-id/CAAKRu_ZwCwWFeL_H3ia26bP2e7HiKLWt0ZmGXPVwPO6uXq0vaA%40mail.gmail.com

Deciding how far ahead to look

● A stream doesn’t generally know if e.g. SELECT … LIMIT 1 needs more
than one block, so it starts out reading just a single block and increases the
look ahead distance only while that seems to be useful.

● In this way we don’t pay extra overheads such as extra pins and bookkeeping
unless there is some benefit to it.

A B C

1 io_combine_limit K * effective_io_concurrency

Tuning the look-ahead distance

All cached

Sequential I/O
pattern detected:
currently no point

in look ahead
further than

io_combine_limit

Random I/O pattern
detected: currently

fadvise used to
control concurrency

Distance moves up
and down in

response
to randomness, hits

and misses

(V17 algorithm, subject to future
Improvements for real AIO!)

recvfrom(10, "Q\0\0\0002SELECT * from pgbench_accou"..., 8192, 0, NULL, NULL)
pread64() = 8192
preadv() = 16384
preadv() = 32768
preadv() = 65536
preadv() = 131072
preadv() = 131072
preadv() = 131072
preadv() = 131072
…
preadv() = 131072
preadv() = 131072
preadv() = 131072
preadv() = 131072
preadv() = 122880
recvfrom(10, 0x564b68d59b60, 8192, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily
unavailable)

Sequential Scan - strace output

Distance increases
quickly up to
io_combine_limit

recvfrom(10, "Q\0\0\0\36ANALYZE pgbench_accounts;\0", 8192, 0, NULL, NULL) = 31
pread64(18, "..."..., 8192, 524288) = 8192
fadvise64(18, 548864, 8192, POSIX_FADV_WILLNEED) = 0
pread64(18, "..."..., 8192, 548864) = 8192
fadvise64(18, 737280, 8192, POSIX_FADV_WILLNEED) = 0
fadvise64(18, 950272, 8192, POSIX_FADV_WILLNEED) = 0
fadvise64(18, 1564672, 8192, POSIX_FADV_WILLNEED) = 0
pread64(18, "..."..., 8192, 737280) = 8192
fadvise64(18, 1638400, 8192, POSIX_FADV_WILLNEED) = 0
fadvise64(18, 1974272, 16384, POSIX_FADV_WILLNEED) = 0
fadvise64(18, 2097152, 8192, POSIX_FADV_WILLNEED) = 0
fadvise64(18, 2383872, 8192, POSIX_FADV_WILLNEED) = 0
pread64(18, "..."..., 8192, 950272) = 8192
fadvise64(18, 2400256, 8192, POSIX_FADV_WILLNEED) = 0
fadvise64(18, 2531328, 8192, POSIX_FADV_WILLNEED) = 0
fadvise64(18, 2654208, 8192, POSIX_FADV_WILLNEED) = 0
...
pread64(18, "..."..., 8192, 1564672) = 8192
fadvise64(18, 3276800, 8192, POSIX_FADV_WILLNEED) = 0
pread64(18, "..."..., 16384, 1974272) = 16384
fadvise64(18, 3792896, 8192, POSIX_FADV_WILLNEED) = 0
pread64(18, "..."..., 8192, 2097152) = 8192

Random Scans - strace output

Issuing POSIX_FADV_WILLNEED
early, anticipating later pread

I/O combined when
neighbouring blocks are
sampled

Some “streamification” projects
Read Stream user Status

Sequential Scan (heap AM) v17

ANALYZE (heap AM) v17

pg_prewarm v17

CREATE DATABASE (strategy = wal_log) Committed, v18

pg_visibility Committed, v18

VACUUM (heap AM) WIP

autoprewarm WIP

Bitmap Heap Scan WIP

Recovery WIP

Many more opportunities to “streamify” things

● Index scans in core
○ Many types of index need patches to use streams

● Extension AMs
○ Every table AM and index AM is a potential candidate for streamification
○ In v17, extensions that start using streams will benefit from I/O combining and read-ahead

advice for random access
● All code that is using the stream abstraction will automatically benefit from

future improvements to support true AIO in later releases
● Streams should be the preferred way to access predictable sequences of

relation data

Part III: More experimental work
on I/O streaming

Research on other kinds of Read Stream

● POC: Multi-relation read stream
○ Developed for recovery/replication; other users are possible

● POC: Automatic read stream
○ Drop-in replacement for traditional ReadBuffer() that speculatively reads ahead with simple consecutive

block heuristics, for cases that can’t be easily predicted but today benefit from kernel read-ahead

● POC: Out-of-order streams: return already-cached data first
● POC: Raw files, by-passing the buffer pool
● Ideas: Non-I/O speed-ups may be possible with streams

○ Even for data that is fully cached already and thus don’t need I/O, it can still be useful to look ahead:

memory can be prefetched into high cache levels

○ Future work on buffer mapping may use a tree structure, and be able to find consecutive block numbers in

memory faster with fewer locks

Experiment: streamifying pgvector HNSW search

● Gaph traversals with trivially predictable
block access, and also some speculative
prediction opportunities

● Streamifying just the easy part already
gives measurable speedup and reduced
variation with cold indexes (see
pgsql-hackers list for patch)

● Cold HNSW may not be interesting in
practice… but DiskANN-like indexes
(e.g. pgvectorscale) might be a good
target?

Writing: WIP

● Initial focus was on an API for reading
○ Reads happen all over the tree

○ Important to make a suitable read abstraction available for wider use ASAP

● Writing happens in fewer more centralised places: WriteStream POCs exist
○ Checkpointer

○ Background writer

○ Evicting individual buffers

○ Evicting buffers used in a BufferAccessStrategy (“ring” of reusable buffers)

○ Raw relation writing that bypasses buffer pool

Part IV: Introduction to true AIO

https://github.com/anarazel/postgres/tree/aio-2 (note 2!)
Andres Freund’s proposed AIO subsystem

● Advice-based prefetching is replaced with background reading
○ posix_fadvise(..., POSIX_FADV_WILLNEED), intermediate work, preadv(...) becomes:
○ [start read], intermediate work, [wait for completion]

● Mechanism used is selected with io_method setting
○ synchronous – portable
○ worker – portable
○ io_uring – Linux

● Other implementations are possible
○ iocp – Windows overlapped
○ posix_aio – FreeBSD
○ <extension>? – useful for distributed/network storage projects?

https://github.com/anarazel/postgres/tree/aio-2

● Anything using the stream abstraction automatically starts using
asynchronous I/O

● Running I/O operations are represented as an object in shared memory
● The work done so far on I/O combining and streaming was an architectural

change to prepare for DIO and AIO
○ Parellelising the streamification work
○ Avoiding potential regressions

Part V: Trying out AIO patches

$ git remote add andres https://github.com/anarazel/postgres.git
$ git fetch andres aio-2
$ git checkout aio-2
$ cd build
$ ninja install
$ path/to/bin/initdb -D pgdata
$ path/to/bin/postgres -D pgdata

 /path/to/bin/postgres -D pgdata
 ├─ postgres: io worker worker: 1
 ├─ postgres: io worker worker: 0
 ├─ postgres: io worker worker: 2
 ├─ postgres: checkpointer
 ├─ postgres: background writer
 ├─ postgres: walwriter
 ├─ postgres: autovacuum launcher
 ├─ postgres: logical replication launcher
 └─ postgres: user postgres [local] idle

https://www.postgresql.org/message-id/uvrtrknj4kdytuboidbhwclo4gxhswwcpgadptsjvjqcluzmah%40brqs62irg4dt

Try it yourself

* More recent

https://www.postgresql.org/message-id/uvrtrknj4kdytuboidbhwclo4gxhswwcpgadptsjvjqcluzmah%40brqs62irg4dt

io_method = sync

● Works just like v17, no AIO, useful mainly for
comparison/understanding

● Synchronous system calls
○ Relying on system read-ahead for sequential access
○ Issuing read-ahead advice for random access

● Performs badly with direct I/O enabled, because read-ahead
(heuristic or advice-based) is not possible

io_method = io_worker

● I/O is offloaded to worker processes
● Number of I/O workers is controlled by io_workers setting
● Should probably be more dynamic (future work)

● Process tree when io_workers = 3

 68410 ? Ss 0:00 postgres: io worker worker: 0
 68411 ? Ss 0:00 postgres: io worker worker: 1
 68412 ? Ss 0:00 postgres: io worker worker: 2
 68413 ? Ss 0:00 postgres: checkpointer
 68414 ? Ss 0:00 postgres: background writer
 68416 ? Ss 0:00 postgres: walwriter
 68417 ? Ss 0:00 postgres: logical replication launcher

Query execution process (regular backend):
kill(69236, SIGURG) = 0
epoll_wait() = 1
kill(69236, SIGURG) = 0
epoll_wait() = 1
kill(69236, SIGURG) = 0
epoll_wait() = 1
kill(69236, SIGURG) = 0
epoll_wait() = 1

● Backend process signals worker process to start a read
operations before it needs the data

● In the best case the read is finished before it needs the
data, but if not it waits for the I/O worker to finish

pread64() = 8192
kill(69247, SIGURG) = 0
pread64() = 16384
kill(69247, SIGURG) = 0
epoll_wait() = 1
pread64() = 32768
kill(69247, SIGURG) = 0
epoll_wait() = 1
pread64() = 65536
kill(69247, SIGURG) = 0
epoll_wait() = 1
pread64() = 131072
kill(69247, SIGURG) = 0
epoll_wait() = 1
pread64() = 131072

● Worker process does the read
● Then signals backend process, saying the read

is finished, but only if it is waiting
● If the queue of I/O requests is empty, it waits for

more instructions

I/O worker process:

io_worker:

submission queue entries completion queue entries

• io_uring_enter(): initiate and/or wait for many operations

• Start multiple operations at once by writing them into a submission queue in user
space memory and then telling the kernel

• Consume completion notifications, either directly from user space memory if
possible, or by waiting if not

io_method = io_uring

io_method = io_uring

recvfrom(138, "Q\0\0\0002SELECT * from pgbench_accou"..., 8192, 0, NULL, NULL) = 51
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
…
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
io_uring_enter(4, 1, 0, 0, NULL, 8) = 1
recvfrom(138, 0x55ba69263d20, 8192, 0, NULL, NULL) = -1 EAGAIN (Resource temporarily unavailable)

Simple benchmark results

Configuration:

● autovacuum = off
● effective_io_concurrency = 128
● io_combine_limit = 32

Create table:

● $ pgbench -i -s 5000 $DB → 73 GB table

Query:

● SELECT sum(abalance) FROM pgbench_accounts;

io_method - Timings

io_direct - CPU cycles

Conclusion

● Streams enable optimisations, current and future
● Consider streamifying your extension or parts of PostgreSQL you are

interested in, we’re happy to help if we can!
● If you can’t for technical reasons, we’re very interested to know why and

how we can improve the infrastructure
● Try out the AIO v2 patch set

The end
το τέλος

